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Abstract — Current networks comprise a multitude of 

different parameters, be it different transport technologies, 

protocols, or offered data rates. The multitude and variety of 

existing and emerging wireless and wired networking 

technologies continues to be the driving force towards 

convergence of networks. This is triggering the growing 

availability of communication devices with multiple 

networking capabilities. This work addresses the problem of 

using several different network interfaces, as a method to 

increase the throughput in wireless ad-hoc networks. It 

studies and compares different techniques that have been 

previously presented in the literature, and proposes an 

architecture applicable to a broad range of networks. To 

achieve such goal, we implemented an end-to-end 

communication abstraction that can be used in heterogeneous 

mobile ad-hoc networks. The solution is based on a virtual 

interface (vi) approach, which allows the usage of all 

interfaces presented in a mobile device simultaneously, while 

hiding the heterogeneity from the applications. Additionally, 

it allows any number of interfaces to be added, increasing the 

total throughput. We further investigate methodologies to 

explore the availability of multiple interfaces in order to 

reduce energy consumption. 

Keywords: Multihoming, Heterogeneous wireless networks, 

Efficiency, Virtual Interface, Load-balancing. 

 

1.  Introduction 

The transparent support of a multitude and variety of 

existing and emerging wireless and wired networking 

technologies is a driving force towards convergence of 

networks. Moreover, it is commonplace nowadays to have 

electronic devices with multiple networking capabilities. 

Personal computing devices, e.g., laptops, PDAs, 

smartphones, are typically equipped with several 

networking interfaces ranging from different flavours of 

Wireless Fidelity (Wi-Fi) to Ethernet, GPRS, UMTS, and 

Bluetooth. 

Adding to the diversity of network interfaces that end-

user devices today include, the common Internet end-user 

has at his/her disposal a set of applications with 

significantly different bandwidth requirements and which 

comprise multimedia services, gaming, as well as 

collaboration, among others. However, most services 

provided today to the end-user simply take advantage of 

one network interface at a time. 

This perspective is bound to change due to the fact that 

more and more, different Service Providers (SP) serve the 

same household or enterprise location. As an answer to 

this increasing complexity, several traffic-engineering 

techniques are being applied to take advantage of the 

different interfaces available on a single device. This is the 

case of multihoming and load-balancing, techniques which 

have been used to give networks some redundancy and 

redirect traffic flows based on the device necessities 

(power, signal strength, available bit rate, etc), thus 

assisting in making the network more robust. Hence, 

multihoming and load-balancing aspects are to be 

surveyed, analyzed and compared to the work developed in 

this paper, but as will be seen, the multiple and 

simultaneous use of different interfaces is still in an 

embryonic state, since it is not yet possible to make full 

use of all the physical interfaces present in mobile devices. 

Our main objectives are two-fold. Firstly, to understand 

up to which point and for which cases it is relevant to 

consider a single interface (as a virtual container for all the 

potential network interfaces in an end-user device). 

Secondly, to analyze and evaluate up to which point is 

possible to achieve an efficient utilization of multiple 

network interfaces by devices via rate control and optimal 

assignment of traffic flows to available networks. 

This document is organized as follows: the next section 

surveys previous work in this area, addressing several 

possible ways to improve the effectiveness of a 

heterogeneous ad-hoc network, as well as some problems 

that may arise from the implementation of such solutions. 

Section 3 presents our solution which is based on a virtual 

layer two device. In section 4 we evaluate the system and 

section 5 concludes the paper. 

 

2.  Related Work 

This work addresses the efficient utilization of multiple 

network interfaces by devices, via rate control and optimal 

assignment of traffic flows to available networks, with a 

special emphasis on Ad-Hoc networks. This section 
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introduces fundamental concepts, presenting a brief 

analysis of current related research.  

 

2.1. Transparent Heterogeneous Mobile Ad-Hoc 

Networks 

The authors’ of this work [1] goal was to develop an 

end-to-end communication abstraction that supports MAC-

switching1, node mobility and multihoming2. Two issues 

to be solved are broadcast emulation and handover. 

Broadcast emulation because broadcast is not directly 

supported in Bluetooth (or on nodes comprising both 

Bluetooth and 802.11). 

The authors define a Virtual Interface (vi) that is 

responsible for storing a MAC/Interface mapping, based 

on incoming packets. Like a Linux Ethernet bridge [3], the 

vi represents a regular layer-two-device and can be 

configured accordingly. The vi allows to plug in any 802.x 

compatible network device, like e.g a wireless LAN card 

or a BNEP/Bluetooth connection, while hiding the 

heterogeneity of the used devices from the upper layers. 

For every neighbouring node, the vi holds an array of 

possible outgoing interfaces in a so called neighbouring 

database. The author’s solution is not bound to 802.11x or 

Bluetooth, but works together with any 802.x-compatible 

MAC Layer. The vi in combination with a MANET 

routing protocol supports multihoming, dynamic 

reconfiguration and node mobility. 

If the vi receives a packet from the upper layer for 

delivery, it first checks the packet type. In case the packet 

is a broadcast packet, it will be sent through all available 

interfaces. Therefore, the vi also acts as a broadcast 

emulation layer for Bluetooth. However, if the packet is 

unicast, the vi looks for the corresponding entry in the 

neighborhood database mentioned above and retrieves the 

information about the interface the packet has to be sent to 

(entries are periodically checked for expiration). If there is 

more than one option, the vi makes use of another feature, 

the so called priority table. The priority table specifies a 

ranking among the interfaces, meaning that whenever a 

given neighbour can be reached through several interfaces, 

the interface with the lowest priority is taken. This means 

that the vi also acts as a load-balancing mechanism, 

capable of prioritizing interfaces based on different factors 

(e.g. energy consumption).  

Even though this work presents an end-to-end 

communication abstraction that can be used in 

heterogeneous mobile ad-hoc network, it does not make 

full use of the interfaces presented in mobile devices. 

Meaning, this solution does not offer the possibility to use 

both interfaces simultaneously, to send different traffic 

flows of information in order to increase the overall 

transmission rate. 

                                                           
1 Refers to the fact that the used MAC technology may change along a 

source/destination path. 
2 A node having multiple network interfaces. 

2.2. On Effectively Exploiting Multiple Wireless 

Interfaces in Mobile Hosts 

The authors of On Effectively Exploiting Multiple 

Wireless Interfaces in Mobile Hosts, study if 

heterogeneous wireless interfaces can be aggregated with 

intelligent strategies to improve throughput beyond sum of 

the parts, as they call them super-aggregation principles. 

The authors propose three principles in the context of TCP 

that achieve super-aggregation benefits in Wi-Fi network 

when by adding a 3G interface [4]:  

 Selective offloading: some of the interfaces may have a 

limited bandwidth, and by selectively offloading some 

portions of the data transferred it can cause a 

significant impact on the performance. 

 Proxying: when an interface has only limited 

bandwidth but is up when the other interface is down, 

the limited bandwidth can be used for critical control 

information that in turn can serve to significantly 

improve the overall performance of the data transfer. 

 Mirroring: for certain portions of the data being 

transferred intelligently mirroring the transfer on the 

interface with lower bandwidth can again have a 

profound impact on the perceived performance.  

The super-aggregation principles presented can be 

implemented as a layer-3.5 software middleware in the 

mobile host. It can be implemented in the Linux kernel and 

uses NetFilter [5][6] to capture and process TCP packets 

traversing the network stack, or generate packets if 

necessary. The super-aggregation principles only require 

deployment at the mobile device and do not require any 

modification at the remote host or intermediate routers. 

The TCP implementations on the remote host and the 

mobile device are unaware of the super-aggregation 

principles that improve their performances transparently 

[4]. With this deployment model, super-aggregation can 

enhance end-to-end performance of mobile host with any 

legacy TCP-based server. 

This solution although making possible the usage of 

two interfaces simultaneously (in this case Wi-Fi and 3G) 

and increasing the total throughput, does not escalate to 

more interfaces, does not take in consideration the use of 

two interfaces with similar bandwidth since it uses the 

interface with lower transmission rate to send certain small 

messages (e.g. ACK messages) and the other interface to 

send and receive the remaining data. 

The tests prove that their solution in fact provides clear 

improvements in terms of throughput beyond the sum of 

the parts, which did not happen with other simple 

aggregation solutions [5][7][8], but unfortunately the 

authors only tested their solution with TCP data, 

neglecting the UDP data. 

 

2.3. Linux Ethernet Bridge 

The Linux Ethernet Bridge allows putting several real 

interfaces into a virtual bridging device. It is not only an 

in-kernel equivalent to a real Ethernet bridge but together 
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with Netfilter a very sophisticated tool for packet filtering. 

Packets are forwarded based on Ethernet address, rather 

than IP address (like a router). Since forwarding is done at 

Layer 2, all protocols can go transparently through a 

bridge. The Linux bridge code implements a subset of the 

ANSI/IEEE 802.1d standard. 

Bridging is supported in the 2.4 and 2.6 kernels from 

all the major distributors. The required administration 

utilities are in the bridge-utils [3] package in most 

distributions. 

An Ethernet bridge distributes Ethernet frames coming 

in on one port to other ports associated to the bridge 

interface. Whenever the bridge knows on which port the 

MAC address to which the frame is to be delivered is 

located it forwards this frame only to this only port instead 

of polluting all ports together. Ethernet interfaces can be 

added to an existing bridge interface and become then 

(logical) ports of the bridge interface. 

     The advantage of this system is evident. Transparency 

alleviates the network administrator of the pain of 

restructuring the network topology.  

 

3. The Virtual Network Interface System  

We conceived a virtual interface that is able to, not 

only perform load-balancing, but also analyze each 

equipment needs using a priority and a neighboring 

database table. This virtual interface (vi) besides hiding the 

network heterogeneity from the application, aggregates 

transparently the physical interfaces under it, and selects 

the interfaces to be used. If necessary, it will perform as 

well the handover, in case an interface is no longer 

available. The architecture of the implemented vi will be 

explained in more detail during the next sections. 

Although we are interested in a generic solution, we 

take a network that combines different flavors of 802.11 as 

a basis for this work, in particular to assist realistic 

experimentation. 

 

3.1. Proposed Architecture 

In terms of architecture, it is divided into 4 main 

blocks:  

 Virtual Interface.  

 Priority Table. 

 Decider / Virtual Bandwidth Aggregation (VBA). 

 RTT Estimator. 

 

Figure 1 describes the path that the data coming from a 

certain application takes, until it reaches the physical 

interfaces, passing through our virtual interface. 

The data coming from and to the application is 

intercepted by the virtual interface, which will check three 

parameters: the priority, availability and RTT of each 

interface. Then the Virtual Bandwidth Aggregation block 

(VBA) will decide how to distribute the intercepted data 

between the available physical interfaces. 

The virtual interface is similar to the Linux Ethernet 

Bridge [10]. The vi represents a regular layer-two-device 

and can be configured accordingly. The vi supports any 

802.x compatible network device, such as wireless LAN 

card or a Bluetooth connection, while hiding the 

heterogeneity of the used devices from the upper layers 

[9]. 

 

Figure 1: Interaction between the implemented blocks. 

The vi also holds an array of possible outgoing 

interfaces in a neighboring database (NDB), similar to the 

Linux bridge’s forwarding database. An entry contains a 

timestamp and it is created upon receiving the first packet 

(i.e. a routing broadcast message or a route reply) of the 

associated neighbor/interface pair. Every consecutive 

incoming packet refreshes the timestamp. With this 

information the vi has a view of all neighbor nodes and the 

interfaces that are available to be used.  

The priority table specifies a ranking among the 

interfaces, meaning that whenever a given neighbor can be 

reached through several interfaces, the interface with the 

highest priority is taken, being 0 de highest.  

The default priority is also 0, which means if the user 

wants a specific interface to be used, he has to define the 

priority of each interface. If there are interfaces with the 

same highest priority, all of those are used simultaneously, 

since no limitations were set by the user (e.g. no 

preference between Wi-Fi over Bluetooth).  

 The vi collects information from the priority table to 

select a set of interfaces for communication, according to 

each device’s needs. It is responsible for deciding on 

handovers and to perform them, switching the traffic from 

one interface to another using a simple timer. 

The VBA/decider, has information concerning the 

interfaces that can be used from the vi, and according to 

that information chooses how the data, we want to send, is 

divided between those interfaces. This is the mechanism 

that will increase the total throughput, in comparison with 
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a simple solution, since we are dynamically allocating the 

data we want to send between the existing interfaces. 

Based in the number of physical interfaces present in a 

mobile device, their priority and bandwidth, the 

VBA/decider, decides what to do, in this case which 

interfaces should be used. The implementation details, and 

how the decision is taken by the VBA, are explained 

afterwards, in section 3.2.  

The RTT Estimator is responsible for measuring the 

average RTT for each physical network interface, which 

will then relay it to the VBA so it can decide which 

interfaces to use. The estimation is based on the traffic 

leaving the device, and it is done so we can have a clear 

image of the neighboring nodes, and if a certain path used 

by a physical network interface is congested or not. This 

estimation is made periodically and the values stored in a 

hash table, so that the VBA can easily access this 

information. 

 

3.2. Implementation Aspects 

This section is exclusively dedicated to the 

contributions of this work both in terms of concepts, 

implementation, and analysis. 

The virtual network interface for transparent 

heterogeneous mobile ad-hoc networks in terms of 

implementation consists of three parts: 

1. A kernel module providing the actual network 

interface. 

2. A library providing programmatic access to the 

configurable options. 

3. A userspace utility to manage virtual interfaces. 

In terms of implementation, we first needed to rewrite 

the previous implementation of the virtual interface code 

[1], since it was limited to a very specific version of the 

Linux kernel, and only worked with sysfsutils v1.x [11]. In 

version 2.x sysfsutils suffered a number of changes to the 

way attributes were populated, another significant change 

was the removal of struct sysfs_directory, which rendered 

the previous module implementation non operational.  

The second step was to improve the method used to 

intercept the data, since the previous one was too evasive 

[2]. The hook was placed in the general packet reception 

routine of a network device. Before passing the sk_buff to 

the upper layers it was checked if it has to be passed to a 

virtual interface. This previous solution added so much 

overhead to the vi, that the total throughput was 

significantly affected.  

The solution we found was to insert Netlfilter hooks, 

removing the need to recompile the Kernel with the patch 

inserted into the dev.c file, substantially reducing the 

overhead added. 

The next step was to add a new block to the virtual 

interface, named Decider / Virtual Bandwidth Aggregation 

(VBA). This block is responsible for choosing which 

physical interfaces to use from the ones behind the virtual 

interface. The VBA makes this decision based on three 

parameters: the priority and RTT of each interface and 

their availability according to the neighboring database, 

which contains the available neighbors and the path used 

to reach them.  

Based on these three parameters, the VBA chooses 

how the data stored in the dev_queue_xmit buffer will be 

redirected to the available interfaces. For this purpose the 

physical interfaces are transparently aggregated under the 

virtual interface and a load balancing mechanism was 

implemented to distribute the data between the available 

interfaces. To do this we calculate the RTT of each 

interface, and use a simple function to calculate a value in 

the form of percentage, for each interface. This value 

defines the percentage of data intercepted by the vi a 

physical interface is responsible for. By doing this we are 

dynamically balancing the traffic between our physical 

interfaces, taking in consideration not only their RTT but 

also the paths actually being used. 

The way we aggregate the interfaces under the virtual 

interface is the same used by the one implemented by the 

Linux bridge [3], where there is an aggregation of several 

interfaces, and the traffic is redirected between them. What 

was done was an adaptation of the mechanism used by 

Linux Bridge to our virtual interface, so that it would also 

work in an ad-hoc network environment. 

Additionally, the VBA is also able to monitor the 

device’s power levels (the amount of battery left and if the 

device is plugged in to any power adapter), and if needed it 

will reduce the energy consumption by dynamically 

choosing the interfaces, based on their power consumption 

and throughput, making certain that the device uses the 

minimum amount of power to send the data. This extra 

function was also created from scratch, allowing the virtual 

interface to balance the data in a different way according 

to the power level, in order to save some energy. 

The detailed implementation of each block will be 

presented in the next sections.  

 

3.2.1. Data Interception 

The most promising method we found to intercept the 

data, was using a custom Netfilter target. Such a target can 

be loaded and unloaded from kernel at any time. A well-

understood architecture in the kernel and a userspace 

utility makes Netfilter a powerful tool. The Netfilter target 

for the virtual interface and other known Netfilter targets 

can also be combined in any favored way [5].  

Packets will pass through hooking points sequentially. 

On each hooking point, it is possible to configure some 

filtering rules via the iptables command. After packets 

pass through NF_IP_PRE_ROUTING, the Linux kernel 

makes the routing decision to decide whether packets 

should enter the local processes or be routed to the next 

hop through the virtual interface and then redirected to a 

certain physical interface (this is decided by the decider).  
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The Netfilter hook is created by the net_hook function, 

and registered using nf_register_hook. By adding the 

hook, we are intercepting and storing each data flow in a 

temporary buffer (dev_queue_xmit), while the virtual 

interface decides to which network interface(s) it should be 

redirected to.   

 

3.2.2. The Neighbor Database (NDB) 

The neighbor database is a hash table with the hash 

function calculated on the mac address. A linked list for 

each hash value contains the entries corresponding to 

neighbors (cf. Figure 2).  

Figure 2: The neighbor database (simplified). 

At the very beginning the neighboring database 

contains no entries but the transmission of a broadcast 

packet does not need any neighborhood information 

anyway. After the route request has passed several hops, a 

route reply eventually returns back to the origin. The route 

reply not only establishes the route but also creates an 

entry within the neighboring database, providing the vi 

with information on the interface to which the packets to 

the given neighbor have to be transmitted. 

In the case of a pro-active routing protocol, things are 

slightly different. Here nodes periodically broadcast their 

neighboring information and therefore are also creating 

entries within neighborhood databases. In both cases 

(proactive and reactive) the NDB entry is established in 

combination with the new route, regardless of whether the 

MAC technology changes or not. 

 

Insertion  

The function to insert and update entries into the 

neighbor database is the same. First, the hash table is 

searched for a matching entry. If one is found, it is 

updated; otherwise a new entry is created. The update sets 

the timestamp to the kernel time jiffies3. 

Outgoing link selection  

Outgoing links are selected according to the available 

neighboring nodes, present in the neighboring database. 

                                                           
3 A jiffy is the duration of one tick of the system timer interrupt. It is not an 
absolute time interval unit, since its duration depends on the clock interrupt 

frequency of the particular hardware platform. 

First we check if there is any available neighbor, if not, 

then the network interface cannot be used. After knowing 

which network interfaces can be used, the VBA decides 

which ones to use, based on their priorities and RTT 

estimation.  

This structure is used to store the information of the 

available neighbors in an ad-hoc network, particularly the 

available nodes and which interface should be used to 

establish a connection with a certain node. We also added 

the possibility to use the virtual interface in a non ad-hoc 

scenario, which widens the possible scenarios the vi can be 

used in.  

 

3.2.3. Decider / Virtual Bandwidth Aggregation (VBA) 

The VBA is responsible for choosing how the data, we 

want to send, is divided between the available interfaces. 

This is the mechanism, within our solution, that was 

created from scratch and shall increase the total 

throughput, in comparison with a basic setup, without the 

virtual interface, since we are transparently aggregating the 

available interfaces under the vi and dynamically 

allocating the data we want to send between the existing 

interfaces. 

As mentioned before, there are several steps the vi 

must complete before choosing how to divide the data 

between the physical interfaces. First it is necessary to 

check three parameters: the priority and RTT estimation of 

each interface and their availability. Based on these three 

parameters the VBA chooses how the data stored in the 

dev_queue_xmit buffer will be redirected to the available 

interfaces.  

To store the priority of each physical interface, we 

created a simple hash table that stores the names of each 

physical interface within a certain virtual interface, and 

their corresponding priorities. The access to the priority 

table is done in order do find all the physical interfaces 

with the highest priority, being 0 the highest. 

After knowing which interfaces to use and their 

availability, it is necessary to calculate the Round-Trip 

Time (RTT) of each physical interface.  

For this purpose and since TCP continuously estimates 

the current RTT of every active connection in order to find 

a suitable value for the retransmission time-out, we 

implemented a mechanism capable of calculating the RTT 

using TCP’s periodic timer. Each time the periodic timer 

fires, it increments a counter for each connection that has 

unacknowledged data in the network. For every data 

stream sent using TCP there is an acknowledge response 

that reaches the mobile device, these packets are 

intercepted by the Virtual Interface, which will then extract 

the RTT estimation. 

After extracting the RTT information out of the TCP 

ACK packets every 5 seconds, we use formula (1) to 

calculate the smoothed RTT (SRTT), which give us a more 

correct estimation of the actual average RTT for each 
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network interface. With each new sample Si, the new 

SRTT is computed as [12][13]: 

                               (1) 

Where SRTT(i) is the current estimate of the round-trip 

time, SRTT(i+1) is the new computed value, and α is a 

constant between 0 and 1 that control how rapidly the 

SRTT adapts to changes (usually α=1/8).  

By applying formula (1) with the information extracted 

from the ACK packets constantly arriving, we are capable 

of estimating the average RTT values for each physical 

interface, without producing additional data.  

Function (2) is used to balance the data in a 

proportionate way through the several physical interfaces, 

and is executed for each data flow that is intercepted by the 

virtual interface. 

    
 

        
 

    
  

   

 (2) 

The PIa is the percentage a certain interface should be 

used to transfer the data intercepted by the vi and its value 

is between [0, 1]. The sum of all PI’s must be one and it is 

calculated for every single available interface with the 

highest priority. The RTT is the Round-Trip Time of a 

certain interface and the summation interval is between 1 

and n, being n the total number of available physical 

interfaces with the highest priority. 

When a virtual interface is first created, and several 

interfaces are added, the table containing the results from 

formula (2) is empty. For this matter we use function (3), 

which uses the bandwidth from each interface, as a metric, 

to calculate the necessary proportions that will be used to 

calculate the amount of data each physical interface is 

responsible for, within a certain data flow.  

    
          

             
 
   

 (3) 

Again, the PIa is the percentage a certain interface 

should be used to transfer the data intercepted by the vi 

and its value is between [0, 1]. The Bandwidth values are 

acquired via SysFS and the summation interval is between 

1 and n, being n the total number of available physical 

interfaces. 

After calculating all the PI’s, the VBA will now 

redirect the data to the physical interfaces, taking into 

consideration the obtained values.  

In comparison with the previous versions [1][2], where 

the authors only used priorities to divide the data between 

the physical interfaces, we are now using a dynamic load-

balancing mechanism since we are dynamically allocating 

the data through the existing interfaces. 

 

3.2.4. Power Saving Mode 

If the battery level is below 10% and if the mobile 

device is not plugged in to any power adapter then the 

power saving mode is activated. We take into 

consideration the RTT values, in order to extrapolate the 

throughput and the energy consumption of each interface. 

Based on these two parameters we find the solution that 

consumes the least amount of energy to send the data. 

The Throughput is measured in bits per second, it is 

estimated based on the RTT measurements and it is 

calculated using formula (4). Note that by default the TCP 

Buffer size >= TCP Window size. Typical TCP window 

size is equal to 64 Kbyte, and the RTT is measured in 

seconds.  

The value we obtain in formula (4) is a theoretical 

value of the throughput. It is calculated in order to estimate 

the energy consumption of a certain interface and is used 

in formula (5).  To simplify the calculation we are 

assuming a packet loss of 0%, since the obtained values 

are merely for comparison reasons, so we can understand 

which interfaces use the most amount of energy to send a 

certain data flow. 

            
               

   
 (4) 

When a node sends or receives a packet, the associated 

network interface, decrements the available energy 

according to the following parameters: (a) the specific 

network interface controller (NIC) characteristics, (b) the 

size of the packets and (c) the bandwidth used. The 

following formula represents the energy used (in Joules) 

when a packet is transmitted or received (Formula 5) and 

the packet size is represented in bits. 

 

             
                                         

          
  (5) 

The energy consumption is measured in miliamperes 

(mA), varies with the interface being used and if a packet 

is being transmitted or received. The energy supply also 

varies with the device being used and is measured in Volts 

(V). 

Although the equipment consumes energy, not only 

when sending and receiving but also when listening, we 

have assumed in our model that the listen operation is 

energy free, since all the evaluated ad-hoc routing 

protocols will have similar energy consumption due to the 

node idle time. 

After knowing how much energy a network interface 

requires for sending a packet, we can now calculate if the 

current set up, defined by the VBA is consuming the least 

amount of energy to send a certain data flow. For that we 

use formula (6), representing the energy consumed during 

the transmission of the data present in the output buffer (in 

Joules). The BufferSize and PacketSize are both 

represented in bits and the summation interval is between 1 

and n, being n the total number of available physical 

interfaces with the highest priority. The PI represents the 

value calculated in either formula (2) or formula (3) and 

Energy represents the energy used (in Joules) when a 

packet is transmitted, and it is calculated in formula (6). 
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    (6) 

We then compare the acquired energy consumed value 

with the energy the interface with the lowest energy 

consumption would require for sending the same amount 

of data. For that we use formula (7). The parameters are 

the same as the ones in formula (6), but now we are only 

taking in consideration one interface, not all the interfaces 

present in the mobile device. 

                  
          

          
         (7) 

After acquiring this second value we compare both 

energy results, and verify if EnergyConsumedVBA ≥ 

EnergyConsumedI. If this is the case, then the VBA will 

only use the interface with the lowest energy consumption 

to transmit the data flow, since it will consume less energy. 

 

4. System Evaluation 

This chapter is dedicated to the performance evaluation 

of the main building blocks of this work, attempting to 

answer the questions that lead to this work and that can be 

aggregated into three main aspects: 

 Is the overhead added by the virtual interface 

excessive?  

 Are the implemented mechanisms improving the total 

throughput?  

 Is the handover time affected by such end-to-end 

abstraction? 

The traffic used in the simulations was generated by 

relying on iperf4, since it is supported by both Linux and 

Windows operated systems, via its graphical component 

jperf5. It is more focused on measuring the network 

available bandwidth, capable of measuring bandwidth and 

datagram loss and also presents the results of jitter and 

RTT. To evaluate the overhead and handover time, we 

used the command ping. 

For each test, in terms of measuring the available 

bandwidth we also tested different packet sizes, which are 

important to determine the per-packet overhead. The 

values are averaged over 20 readings and each reading 

takes 100 seconds to acquire (except the handover time 

that requires only the number of packets lost while 

handover is occurring). 

All readings were taken on a laptop Sony Vaio PCG-

7N2M. A Tsunami desktop computer using Windows 

Vista operating system was also used as server, to receive 

the data sent from the laptop running the virtual interface 

module. The access points used in the experiments were 

routers Fonera+6, flashed with the Linux based firmware 

DD-WRT7. Our solution was tested with AODV-UU [14] 

routing protocol and different types of data (TCP and 

                                                           
4 Iperf, http://sourceforge.net/projects/iperf/ 
5 Jperf, http://sourceforge.net/projects/jperf/ 
6 Fonera, http://www.fon.com/ 
7 DD-WRT, http://www.dd-wrt.com 

UDP). The obtained results were of course compared with 

a simple scenario with no virtual interface, no bandwidth 

aggregation and no load-balancing mechanisms, referred 

as RAW.  

The experiments run considered three different 

topologies as basis for the different developed scenarios. In 

each topology we test both the load-balancing mechanism 

as well as the power saving mode, in terms of throughput 

and delay, to understand the actual impact of the virtual 

interface. 

The first topology considered (Topology I) is 

illustrated in Figure 3. For the mentioned topology, node A 

is connected by means of an ad-hoc network. The purpose 

of this configuration is related to the need to get data that 

serves as control, relating to the situation where we are not 

using the virtual interface, which will then be compared 

with more complex scenarios where we use the vi. We also 

use this topology to estimate the delay added by the virtual 

interface, in order to understand the impact the vi is 

causing in terms of throughput in a situation where only 

one single node is available. The virtual interface will be 

situated behind the physical interface, as presented in 

Figure 3.  

 

Figure 3: Topology I, one interface and one AP. 

Topology II is in fact similar to I, being the only 

difference the number of physical network interfaces 

present and the number of access points, which was now 

increased to 2. Such increment will assist in trying to 

understand the impact caused by the number of interfaces 

in the performance evaluation of the virtual interface. Two 

tests will be made using this topology. In the first one, 

both access points will only have one user connected and 

transmitting data, while in the second test,  one of the 

access points will be saturated with data from a third party 

computer. 

Finally, topology III still consists of paths that are one 

hop long, but now there is just one AP and three network 

interfaces. In this experiment the AP is saturated with data 

from a secondary source. Our expectations were to observe 

what would be the reaction of the vi when there is an 

increment in the number of interfaces, in a worst case 

scenario, where there is just one AP and multiple network 

interfaces. For this scenario we also used different network 

interfaces, two IEEE 802.11g and one IEEE 802.11b. 

 

A
Dest.

B
(Source)

192.168.2.4
ath0

192.168.2.1

eth0

192.168.0.1 192.168.0.141

Switch

802.11b/g 

Interface

Wireless

Wired

Components

Virtual 

Interface
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 1KB 
STD 
(σ) 

2KB 
STD 
(σ) 

4KB 
STD 
(σ) 

8KB 
STD 
(σ) 

16KB 
STD 
(σ) 

32KB 
STD 
(σ) 

RAW 
(Mbps) 

21,914 0,381 22,139 0,343 22,814 0,421 23,108 0,396 23,363 0,414 23,743 0,442 

Virtual 
interface 
(Mbps) 

21,047 0,511 21,243 0,547 21,984 0,650 22,455 0,682 23,022 0,715 23,482 0,788 

Virtual 
Interface w/ 

Power 
saving 

mode on 
(Mbps) 

21,001 0,523 21,109 0,581 21,807 0,694 22,393 0,702 22,900 0,763 23,374 0,802 

Table 3: Wlan throughput in Mbps, different packet sizes. 

4.1. Experiment 1  

Starting with the analysis of the delay added by the vi, 

Table 1 shows the round-trip time in milliseconds and zero 

percentage of packet loss for the two same situations. This 

information allows us to have a very clear image of the 

delay added by the virtual interface since ping was used 

with the default packet size (64bytes). The smaller the 

packets, the more of them there are, which makes it easier 

to calculate the difference in terms of RTT between the 

control, designed as RAW, and our solution, since the 

differences are most likely caused by the vi module  The 

values are taken during 100 seconds and averaged over 20 

readings. 

 
Average 
RTT (ms) 

Std. 
Deviation 

(σ) 

RAW 1,730 0,009 

Virtual Interface 1,799 0,016 

Virtual Interface w/ 
Power saving mode on 

1,808 0,014 

Table 1: Ping results, 1 interface and 1 access point. 

As we can see by the results presented in Table 1 the 

delay added by the vi, while the power saving mode is off, 

is around 4.0%, and roughly 4.2% with the power saving 

mode on, which is almost irrelevant (less than 0,1ms). The 

standard deviation also increases, while using the vi, since 

it is periodically estimating the RTT values for the 

available interfaces, which causes some fluctuations in 

terms of the total throughput. Also, there was zero percent 

packet loss for all three test situations. 

Still in Experiment 1, we calculated the handover time, 

using the command ping. The number of missing packets 

were counted and multiplied by the ping frequency. The 

type of handover that was measured was the horizontal 

handover, where the MAC level protocol remains the 

same, but the route changes. We trigger a route change by 

physically detaching the interface of a node. The results 

are presented in Table 2. Handover times are averages over 

20 readings with standard deviation σ. Entries of the form 

"VI/x" must be understood as "Virtual Interface with a 

maxdiff value of x". 

Under our setup, when the vi was not being used, we 

measured a packet loss of roughly 1.5 packets when the 

route changed from one hop to another. Each packet that is 

lost corresponds to roughly one second passed by, since 

the ping frequency that was used was one second. 

From the results presented in Table 2 we see that 

packet loss increases with increasing maxdiff threshold. 

The former is reasonable because the bigger the maxdiff 

value, the more the priority policy gets enforced, and a 

pure priority driven MAC switching would not lead to any 

switching at all. As expected, the smaller maxdiff gets the 

less stable the handover becomes. However, in our 

scenario a maxdiff value of 10 was sufficient to guarantee 

stable handover while changing interface priorities. 

Type Interface Time (s) Standard 
Deviation (σ) 

Horizontal RAW 
Vi/10 

Vi/100 
Vi/1000 

1.5 
1.8 
2.3 
2.5 

0,5 
0.92 
0.73 
0.67 

Table 2: Handover time in seconds, using Wi-Fi interfaces. 

Regarding the total throughput using TCP data, Table 3 

shows the throughput and corresponding standard 

deviation (σ) when using the virtual interface, and the raw 

measurements taken without it.   

The results we obtained for the first scenario show that 

the difference in terms of throughput between using or not 

the virtual interface for TCP, with just one interface, is 

very small. Around 3.1% less in average with the power 

saving mechanism off and 3.5% while on. Which is a good 

indicator, since with this topology the vi is simply relaying 

packets to the available network interface. 

Finally in Experiment 1, we calculated the amount of 

energy the mobile consumed during 600 seconds, with and 

without the vi module, so we could understand this 

abstraction impact on the energy being consumed by the 

mobile device.  

 Energy 
Consumption 

(mWh) per second 

Energy 
Consumed 

(mWh) in 600s 

Standard 
Deviation 

(σ) 

RAW 5,294 3123,333 1,035 

Virtual 
Interface 

5,316 3136,667 1,209 

Table 4: Energy consumption in milliwatt hour. 

The values in table 4 are presented in miliwatt hour 

(mWh). They were measured during 600s and averaged 

over 10 readings. To measure the consumed energy during 

this period we used the bash script. It extracts the energy 
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the device has, for each 10 seconds. The following table 

presents both the average energy consumption in mWh per 

second, and the total energy consumed during the 600s 

period. 

As we can see in Table 4, the difference in terms of 

energy consumed during 600 seconds, between both 

scenarios, was only 13,33 mWh, just 0,427% more. This 

result proves that the module consumes just a minor added 

amount of energy when compared with a control scenario, 

designed as RAW in Table 4. 

 

4.2. Experiment 2  

The experiment 2 is divided in two scenarios. Both rely 

on Topology II. While in the first test, the two existing 

APs are only being used by one node, in the second test, 

one of the APs is also being used by a second node that is 

constantly sending data, to simulate a saturated AP. The 

two physical interfaces used for this experiment were 

IEEE 802.11g.  

In this experiment we investigate wherever the virtual 

interface is capable of detecting a saturated AP and 

reducing the amount of data a certain physical interface is 

sending to it, by diverting part of the traffic to a second 

physical interface that is using a less saturated AP. 

Two Access Points, no saturation 

For this scenario we used one data flow coming from a 

single application and multiple data flows coming from 

different applications, so the available interfaces could be 

used simultaneously. The throughput values were 

measured during 100 seconds and averaged over 20 

readings. The packet size used for this experiment was 32 

Kbytes. 

The total throughput when using the virtual interface 

with TCP data (while sending a single data flow) is very 

similar in comparison with RAW measurements taken 

without the virtual interface. On the other hand the values 

obtained when sending different data flows, are nearly 

79% higher when comparing with the RAW measurements 

from Experiment 1. This increment results from the fact 

that we are simultaneously using several physical 

interfaces to send the different data flows. 

 Average 
Throughput 

(Mbit/s) 

Standard 
Deviation 

(σ) 

Packet 
loss 
(%) 

One Data Flow 23,627 0,610 1% 

Multiple Data 
Flows 

42,615 5,161 3% 

RAW 28,879 0.410 0% 

Table 5: Throughput in Mbps, 2 network interfaces and 2 APs. 

The packet loss is in average 1% and 3% (cf. Table 5) 

for one data flow and multiple data flows respectively, due 

to the fact that we are constantly switching the physical 

interfaces used to transmit the data, which causes some 

packets to be lost and some fluctuations in terms of 

throughput, raising also the standard deviation. 

Two Access Points, AP C is saturated 

For this scenario we saturated one of the access points, 

to verify how would the vi adapt to a sudden increase in 

terms of the RTT value measured for a certain physical 

interface, connected to that AP. As in the previous test 

experiment, single and multiple data flows were tested. 

The values obtained were taken during a time frame of 100 

seconds, and averaged over 20 readings. For a better 

comparison, we also measured the throughput of a single 

interface, without using the vi module, designated as 

RAW, connected to a single saturated AP. The packet size 

used for this experiment was 32 Kbytes. 

In this specific scenario, with a single data flow, the 

usage of the vi module with two different physical 

interfaces is in average, increasing 63% the total 

throughput, when comparing with a situation where a 

single interface is connected to a saturated AP (11,713 

Mbps).  

When sending different data flows, we obtained a very 

similar result to the one presented in the previous scenario 

(2 APs, no saturation). It takes around 6s for the 

throughput to reach a maximum of 35Mbps, when the vi 

starts using both physical interfaces, and consequently the 

two APs. 

 Average 
Throughput 

(Mbit/s) 

Standard 
Deviation 

(σ) 

Packet 
loss 
(%) 

One Data 
Flow (vi) 

19,125 5,491 2% 

Multiple Data 
Flows (vi) 

33,575 5,551 3% 

RAW 11,713 0,428 1% 

Table 6: Throughput in Mbps, using two interfaces and two APs 
(one saturated). 

The load-balancing mechanism presented in the vi 

module slightly increases the packet loss and standard 

deviation as seen in Table 6. If we compare both the 

standard deviation results, of this and the previous 

scenario, when sending a single and continuous data flow, 

there is a slight increment, which is caused by the 

difference in throughput values obtained for the two access 

points (11.5 Mbps and 23.5 Mbps). 

 

4.3. Experiment 3  

To understand and find the potential limitations of the 

vi module, we decided to create a worst case scenario. It 

relies on Topology III, where we have three physical 

network interfaces (two IEEE 802.11g and one IEEE 

802.11b) connected to just one saturated access points.  

Starting with the analysis of the total throughput using 

TCP data, Table 7 shows the throughput when using the 

virtual interface with one and several different data flows 

during 100 seconds, averaged over 20 readings. The packet 

size used for this experiment was 32 Kbytes.  
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Graph 1: Correlation between the total Throughput in Mbps and the Consumed Energy in miliwatt hour per second (mWh/s). 

We also added the throughput of a single interface, 

calculated without using the vi module, designated as 

RAW, connected to a single saturated AP (values 

calculated in experiment 2), for a better comparison. 

 Average 
Throughput 

(Mbit/s) 

Standard 
Deviation 

(σ) 

Packet 
loss 
(%) 

One Data 
Flow (vi) 

9,915 2,664 2% 

Multiple Data 
Flows (vi) 

14,756 1,021 4% 

RAW 11,713 0,428 1% 

Table 7: Throughput in Mbps, using three interfaces and one 
saturated AP. 

As seen in Table 7 both the packet loss and standard 

deviation, for the two test experiments are above the 

values obtained for the control scenario, described as 

RAW. This difference can be easily explained due to the 

fact that for this experiment we have three network 

interfaces, one of them has a lower bandwidth than the 

other two, which causes a bigger fluctuation in terms of 

total throughput. The one percent increment in the packet 

loss may result from the usage of multiple interfaces in a 

saturated environment. 

 

4.4. Experiment 4 

Finally in Experiment 4 we tested the power 

consumption mechanism, to try to understand if by using 

fewer interfaces to send the data we are able to diminish 

the amount of energy being spent and if the difference is 

significant. This experiment relies on Topology II, the two 

network interfaces (1x IEEE 802.11g, 1x IEEE 802.11b) 

are connected to two access points. Real traffic (different 

data flows, from different applications) was used, to 

simulate a real-life environment. The data for both 

measurements was collected over 600 seconds (10 

minutes) and is presented in Graph 1. Each measurement is 

displayed according to its own axis, so we can then verify 

if there is a correlation between the throughput and the 

energy values. The energy consumption is presented in 

miliwatt hour (mWh), while the throughput is displayed in 

Mbps.  

We can clearly verify from Graph 1, that when there is 

an increment is terms of throughput, there is also a slight 

increment is terms of the energy being consumed by the 

device. The opposite is also true. This happens because the 

power consumption mechanism, depending on the size of 

the data flow, decides if the device should use the network 

interfaces picked by the VBA or the interface with the 

lowest energy consumption to send the data.  

When a data flow has a significant size, it is usually 

better to maintain the VBA’s policy, since the device will 

transmit the data at a higher rate, which will result in a 

lower amount of energy being consumed to send that 

amount of data. When data flows have a relatively small 

size, it takes roughly the same time to send them when 

using one or several network interfaces, resulting in a 

noticeable energy saving when using just one of those 

interfaces (5.4%). This is exactly what we see in Graph 1. 

During this experiment, the mechanism saved roughly 

190 mWh of battery in our device, which for a laptop is 

not very significant, but in a smaller and more economic 

device, such as a mobile phone or a sensor, this difference 

can have a very big impact, since it gives extra time of 

battery. 

 

5. Conclusions and Future Work 

We implemented an end-to-end communication 

abstraction that can be used in heterogeneous mobile ad-

hoc networks. Such networks are characterized by 

different MAC technologies used among the nodes. The 

solution is based on a virtual interface (vi) approach, 

which allows the usage of all interfaces presented in a 

mobile device simultaneously, while hiding the 

heterogeneity from the network and allow any number of 

interfaces to be added, increasing the total throughput. 
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Implementing a virtual interface for transparent 

heterogeneous mobile ad-hoc networks has proven to be a 

good approach.  

Overall there is a slight overhead when relying on the 

vi, be it from a throughput, power consumption, or from a 

delay perspective. This is expected, as by adding a layer of 

abstraction, we are also adding overhead in computation, 

with the expectations to introduce significant advantages. 

Reasonable handover times can be achieved when using 

any routing protocols. The throughput rates when using the 

vi module, with several network interfaces, are 

significantly higher, reaching in some situations an 

increase of 79%. In terms of the power consumption 

mechanism, the experimental values are also very 

promising; by using this mechanism we were able to 

optimize the amount of energy being consumed. 

As future work, we would like to extend the virtual 

interface to work in different access networks, others than 

ad-hoc networks, with for example several 3G and 802.11x 

interfaces. Moreover, it would be interesting to extend the 

module to smaller devices, such as mobile phones, to see 

how it would impair their performance in terms of their 

total throughput and energy consumption.  
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