
1

Combining Heterogeneous Access Networks with

Ad-Hoc Networks for Cost-Effective Connectivity
(Extended abstract of the MSc dissertation)

João Miguel Marques de Almeida da Cunha Mota
Mestrado em Engenharia de Redes de Comunicações

Instituto Superior Técnico

Advisor: Prof. Dr. Artur Miguel do Amaral Arsénio

Co-advisor: Prof. Dr. Helena Rute Esteves Carvalho Sofia

Abstract — Current networks comprise a multitude of

different parameters, be it different transport technologies,

protocols, or offered data rates. The multitude and variety of

existing and emerging wireless and wired networking

technologies continues to be the driving force towards

convergence of networks. This is triggering the growing

availability of communication devices with multiple

networking capabilities. This work addresses the problem of

using several different network interfaces, as a method to

increase the throughput in wireless ad-hoc networks. It

studies and compares different techniques that have been

previously presented in the literature, and proposes an

architecture applicable to a broad range of networks. To

achieve such goal, we implemented an end-to-end

communication abstraction that can be used in heterogeneous

mobile ad-hoc networks. The solution is based on a virtual

interface (vi) approach, which allows the usage of all

interfaces presented in a mobile device simultaneously, while

hiding the heterogeneity from the applications. Additionally,

it allows any number of interfaces to be added, increasing the

total throughput. We further investigate methodologies to

explore the availability of multiple interfaces in order to

reduce energy consumption.

Keywords: Multihoming, Heterogeneous wireless networks,

Efficiency, Virtual Interface, Load-balancing.

1. Introduction

The transparent support of a multitude and variety of

existing and emerging wireless and wired networking

technologies is a driving force towards convergence of

networks. Moreover, it is commonplace nowadays to have

electronic devices with multiple networking capabilities.

Personal computing devices, e.g., laptops, PDAs,

smartphones, are typically equipped with several

networking interfaces ranging from different flavours of

Wireless Fidelity (Wi-Fi) to Ethernet, GPRS, UMTS, and

Bluetooth.

Adding to the diversity of network interfaces that end-

user devices today include, the common Internet end-user

has at his/her disposal a set of applications with

significantly different bandwidth requirements and which

comprise multimedia services, gaming, as well as

collaboration, among others. However, most services

provided today to the end-user simply take advantage of

one network interface at a time.

This perspective is bound to change due to the fact that

more and more, different Service Providers (SP) serve the

same household or enterprise location. As an answer to

this increasing complexity, several traffic-engineering

techniques are being applied to take advantage of the

different interfaces available on a single device. This is the

case of multihoming and load-balancing, techniques which

have been used to give networks some redundancy and

redirect traffic flows based on the device necessities

(power, signal strength, available bit rate, etc), thus

assisting in making the network more robust. Hence,

multihoming and load-balancing aspects are to be

surveyed, analyzed and compared to the work developed in

this paper, but as will be seen, the multiple and

simultaneous use of different interfaces is still in an

embryonic state, since it is not yet possible to make full

use of all the physical interfaces present in mobile devices.

Our main objectives are two-fold. Firstly, to understand

up to which point and for which cases it is relevant to

consider a single interface (as a virtual container for all the

potential network interfaces in an end-user device).

Secondly, to analyze and evaluate up to which point is

possible to achieve an efficient utilization of multiple

network interfaces by devices via rate control and optimal

assignment of traffic flows to available networks.

This document is organized as follows: the next section

surveys previous work in this area, addressing several

possible ways to improve the effectiveness of a

heterogeneous ad-hoc network, as well as some problems

that may arise from the implementation of such solutions.

Section 3 presents our solution which is based on a virtual

layer two device. In section 4 we evaluate the system and

section 5 concludes the paper.

2. Related Work

This work addresses the efficient utilization of multiple

network interfaces by devices, via rate control and optimal

assignment of traffic flows to available networks, with a

special emphasis on Ad-Hoc networks. This section

2

introduces fundamental concepts, presenting a brief

analysis of current related research.

2.1. Transparent Heterogeneous Mobile Ad-Hoc

Networks

The authors’ of this work [1] goal was to develop an

end-to-end communication abstraction that supports MAC-

switching1, node mobility and multihoming2. Two issues

to be solved are broadcast emulation and handover.

Broadcast emulation because broadcast is not directly

supported in Bluetooth (or on nodes comprising both

Bluetooth and 802.11).

The authors define a Virtual Interface (vi) that is

responsible for storing a MAC/Interface mapping, based

on incoming packets. Like a Linux Ethernet bridge [3], the

vi represents a regular layer-two-device and can be

configured accordingly. The vi allows to plug in any 802.x

compatible network device, like e.g a wireless LAN card

or a BNEP/Bluetooth connection, while hiding the

heterogeneity of the used devices from the upper layers.

For every neighbouring node, the vi holds an array of

possible outgoing interfaces in a so called neighbouring

database. The author’s solution is not bound to 802.11x or

Bluetooth, but works together with any 802.x-compatible

MAC Layer. The vi in combination with a MANET

routing protocol supports multihoming, dynamic

reconfiguration and node mobility.

If the vi receives a packet from the upper layer for

delivery, it first checks the packet type. In case the packet

is a broadcast packet, it will be sent through all available

interfaces. Therefore, the vi also acts as a broadcast

emulation layer for Bluetooth. However, if the packet is

unicast, the vi looks for the corresponding entry in the

neighborhood database mentioned above and retrieves the

information about the interface the packet has to be sent to

(entries are periodically checked for expiration). If there is

more than one option, the vi makes use of another feature,

the so called priority table. The priority table specifies a

ranking among the interfaces, meaning that whenever a

given neighbour can be reached through several interfaces,

the interface with the lowest priority is taken. This means

that the vi also acts as a load-balancing mechanism,

capable of prioritizing interfaces based on different factors

(e.g. energy consumption).

Even though this work presents an end-to-end

communication abstraction that can be used in

heterogeneous mobile ad-hoc network, it does not make

full use of the interfaces presented in mobile devices.

Meaning, this solution does not offer the possibility to use

both interfaces simultaneously, to send different traffic

flows of information in order to increase the overall

transmission rate.

1 Refers to the fact that the used MAC technology may change along a

source/destination path.
2 A node having multiple network interfaces.

2.2. On Effectively Exploiting Multiple Wireless

Interfaces in Mobile Hosts

The authors of On Effectively Exploiting Multiple

Wireless Interfaces in Mobile Hosts, study if

heterogeneous wireless interfaces can be aggregated with

intelligent strategies to improve throughput beyond sum of

the parts, as they call them super-aggregation principles.

The authors propose three principles in the context of TCP

that achieve super-aggregation benefits in Wi-Fi network

when by adding a 3G interface [4]:

 Selective offloading: some of the interfaces may have a

limited bandwidth, and by selectively offloading some

portions of the data transferred it can cause a

significant impact on the performance.

 Proxying: when an interface has only limited

bandwidth but is up when the other interface is down,

the limited bandwidth can be used for critical control

information that in turn can serve to significantly

improve the overall performance of the data transfer.

 Mirroring: for certain portions of the data being

transferred intelligently mirroring the transfer on the

interface with lower bandwidth can again have a

profound impact on the perceived performance.

The super-aggregation principles presented can be

implemented as a layer-3.5 software middleware in the

mobile host. It can be implemented in the Linux kernel and

uses NetFilter [5][6] to capture and process TCP packets

traversing the network stack, or generate packets if

necessary. The super-aggregation principles only require

deployment at the mobile device and do not require any

modification at the remote host or intermediate routers.

The TCP implementations on the remote host and the

mobile device are unaware of the super-aggregation

principles that improve their performances transparently

[4]. With this deployment model, super-aggregation can

enhance end-to-end performance of mobile host with any

legacy TCP-based server.

This solution although making possible the usage of

two interfaces simultaneously (in this case Wi-Fi and 3G)

and increasing the total throughput, does not escalate to

more interfaces, does not take in consideration the use of

two interfaces with similar bandwidth since it uses the

interface with lower transmission rate to send certain small

messages (e.g. ACK messages) and the other interface to

send and receive the remaining data.

The tests prove that their solution in fact provides clear

improvements in terms of throughput beyond the sum of

the parts, which did not happen with other simple

aggregation solutions [5][7][8], but unfortunately the

authors only tested their solution with TCP data,

neglecting the UDP data.

2.3. Linux Ethernet Bridge

The Linux Ethernet Bridge allows putting several real

interfaces into a virtual bridging device. It is not only an

in-kernel equivalent to a real Ethernet bridge but together

3

with Netfilter a very sophisticated tool for packet filtering.

Packets are forwarded based on Ethernet address, rather

than IP address (like a router). Since forwarding is done at

Layer 2, all protocols can go transparently through a

bridge. The Linux bridge code implements a subset of the

ANSI/IEEE 802.1d standard.

Bridging is supported in the 2.4 and 2.6 kernels from

all the major distributors. The required administration

utilities are in the bridge-utils [3] package in most

distributions.

An Ethernet bridge distributes Ethernet frames coming

in on one port to other ports associated to the bridge

interface. Whenever the bridge knows on which port the

MAC address to which the frame is to be delivered is

located it forwards this frame only to this only port instead

of polluting all ports together. Ethernet interfaces can be

added to an existing bridge interface and become then

(logical) ports of the bridge interface.

 The advantage of this system is evident. Transparency

alleviates the network administrator of the pain of

restructuring the network topology.

3. The Virtual Network Interface System

We conceived a virtual interface that is able to, not

only perform load-balancing, but also analyze each

equipment needs using a priority and a neighboring

database table. This virtual interface (vi) besides hiding the

network heterogeneity from the application, aggregates

transparently the physical interfaces under it, and selects

the interfaces to be used. If necessary, it will perform as

well the handover, in case an interface is no longer

available. The architecture of the implemented vi will be

explained in more detail during the next sections.

Although we are interested in a generic solution, we

take a network that combines different flavors of 802.11 as

a basis for this work, in particular to assist realistic

experimentation.

3.1. Proposed Architecture

In terms of architecture, it is divided into 4 main

blocks:

 Virtual Interface.

 Priority Table.

 Decider / Virtual Bandwidth Aggregation (VBA).

 RTT Estimator.

Figure 1 describes the path that the data coming from a

certain application takes, until it reaches the physical

interfaces, passing through our virtual interface.

The data coming from and to the application is

intercepted by the virtual interface, which will check three

parameters: the priority, availability and RTT of each

interface. Then the Virtual Bandwidth Aggregation block

(VBA) will decide how to distribute the intercepted data

between the available physical interfaces.

The virtual interface is similar to the Linux Ethernet

Bridge [10]. The vi represents a regular layer-two-device

and can be configured accordingly. The vi supports any

802.x compatible network device, such as wireless LAN

card or a Bluetooth connection, while hiding the

heterogeneity of the used devices from the upper layers

[9].

Figure 1: Interaction between the implemented blocks.

The vi also holds an array of possible outgoing

interfaces in a neighboring database (NDB), similar to the

Linux bridge’s forwarding database. An entry contains a

timestamp and it is created upon receiving the first packet

(i.e. a routing broadcast message or a route reply) of the

associated neighbor/interface pair. Every consecutive

incoming packet refreshes the timestamp. With this

information the vi has a view of all neighbor nodes and the

interfaces that are available to be used.

The priority table specifies a ranking among the

interfaces, meaning that whenever a given neighbor can be

reached through several interfaces, the interface with the

highest priority is taken, being 0 de highest.

The default priority is also 0, which means if the user

wants a specific interface to be used, he has to define the

priority of each interface. If there are interfaces with the

same highest priority, all of those are used simultaneously,

since no limitations were set by the user (e.g. no

preference between Wi-Fi over Bluetooth).

 The vi collects information from the priority table to

select a set of interfaces for communication, according to

each device’s needs. It is responsible for deciding on

handovers and to perform them, switching the traffic from

one interface to another using a simple timer.

The VBA/decider, has information concerning the

interfaces that can be used from the vi, and according to

that information chooses how the data, we want to send, is

divided between those interfaces. This is the mechanism

that will increase the total throughput, in comparison with

Virtual
Interface

Applications

…

wlan0

wlan1

wlanx

Mobile
Device

Network

Virtual
Bandwidth

Aggregation
(VBA)

4

a simple solution, since we are dynamically allocating the

data we want to send between the existing interfaces.

Based in the number of physical interfaces present in a

mobile device, their priority and bandwidth, the

VBA/decider, decides what to do, in this case which

interfaces should be used. The implementation details, and

how the decision is taken by the VBA, are explained

afterwards, in section 3.2.

The RTT Estimator is responsible for measuring the

average RTT for each physical network interface, which

will then relay it to the VBA so it can decide which

interfaces to use. The estimation is based on the traffic

leaving the device, and it is done so we can have a clear

image of the neighboring nodes, and if a certain path used

by a physical network interface is congested or not. This

estimation is made periodically and the values stored in a

hash table, so that the VBA can easily access this

information.

3.2. Implementation Aspects

This section is exclusively dedicated to the

contributions of this work both in terms of concepts,

implementation, and analysis.

The virtual network interface for transparent

heterogeneous mobile ad-hoc networks in terms of

implementation consists of three parts:

1. A kernel module providing the actual network

interface.

2. A library providing programmatic access to the

configurable options.

3. A userspace utility to manage virtual interfaces.

In terms of implementation, we first needed to rewrite

the previous implementation of the virtual interface code

[1], since it was limited to a very specific version of the

Linux kernel, and only worked with sysfsutils v1.x [11]. In

version 2.x sysfsutils suffered a number of changes to the

way attributes were populated, another significant change

was the removal of struct sysfs_directory, which rendered

the previous module implementation non operational.

The second step was to improve the method used to

intercept the data, since the previous one was too evasive

[2]. The hook was placed in the general packet reception

routine of a network device. Before passing the sk_buff to

the upper layers it was checked if it has to be passed to a

virtual interface. This previous solution added so much

overhead to the vi, that the total throughput was

significantly affected.

The solution we found was to insert Netlfilter hooks,

removing the need to recompile the Kernel with the patch

inserted into the dev.c file, substantially reducing the

overhead added.

The next step was to add a new block to the virtual

interface, named Decider / Virtual Bandwidth Aggregation

(VBA). This block is responsible for choosing which

physical interfaces to use from the ones behind the virtual

interface. The VBA makes this decision based on three

parameters: the priority and RTT of each interface and

their availability according to the neighboring database,

which contains the available neighbors and the path used

to reach them.

Based on these three parameters, the VBA chooses

how the data stored in the dev_queue_xmit buffer will be

redirected to the available interfaces. For this purpose the

physical interfaces are transparently aggregated under the

virtual interface and a load balancing mechanism was

implemented to distribute the data between the available

interfaces. To do this we calculate the RTT of each

interface, and use a simple function to calculate a value in

the form of percentage, for each interface. This value

defines the percentage of data intercepted by the vi a

physical interface is responsible for. By doing this we are

dynamically balancing the traffic between our physical

interfaces, taking in consideration not only their RTT but

also the paths actually being used.

The way we aggregate the interfaces under the virtual

interface is the same used by the one implemented by the

Linux bridge [3], where there is an aggregation of several

interfaces, and the traffic is redirected between them. What

was done was an adaptation of the mechanism used by

Linux Bridge to our virtual interface, so that it would also

work in an ad-hoc network environment.

Additionally, the VBA is also able to monitor the

device’s power levels (the amount of battery left and if the

device is plugged in to any power adapter), and if needed it

will reduce the energy consumption by dynamically

choosing the interfaces, based on their power consumption

and throughput, making certain that the device uses the

minimum amount of power to send the data. This extra

function was also created from scratch, allowing the virtual

interface to balance the data in a different way according

to the power level, in order to save some energy.

The detailed implementation of each block will be

presented in the next sections.

3.2.1. Data Interception

The most promising method we found to intercept the

data, was using a custom Netfilter target. Such a target can

be loaded and unloaded from kernel at any time. A well-

understood architecture in the kernel and a userspace

utility makes Netfilter a powerful tool. The Netfilter target

for the virtual interface and other known Netfilter targets

can also be combined in any favored way [5].

Packets will pass through hooking points sequentially.

On each hooking point, it is possible to configure some

filtering rules via the iptables command. After packets

pass through NF_IP_PRE_ROUTING, the Linux kernel

makes the routing decision to decide whether packets

should enter the local processes or be routed to the next

hop through the virtual interface and then redirected to a

certain physical interface (this is decided by the decider).

5

The Netfilter hook is created by the net_hook function,

and registered using nf_register_hook. By adding the

hook, we are intercepting and storing each data flow in a

temporary buffer (dev_queue_xmit), while the virtual

interface decides to which network interface(s) it should be

redirected to.

3.2.2. The Neighbor Database (NDB)

The neighbor database is a hash table with the hash

function calculated on the mac address. A linked list for

each hash value contains the entries corresponding to

neighbors (cf. Figure 2).

Figure 2: The neighbor database (simplified).

At the very beginning the neighboring database

contains no entries but the transmission of a broadcast

packet does not need any neighborhood information

anyway. After the route request has passed several hops, a

route reply eventually returns back to the origin. The route

reply not only establishes the route but also creates an

entry within the neighboring database, providing the vi

with information on the interface to which the packets to

the given neighbor have to be transmitted.

In the case of a pro-active routing protocol, things are

slightly different. Here nodes periodically broadcast their

neighboring information and therefore are also creating

entries within neighborhood databases. In both cases

(proactive and reactive) the NDB entry is established in

combination with the new route, regardless of whether the

MAC technology changes or not.

Insertion

The function to insert and update entries into the

neighbor database is the same. First, the hash table is

searched for a matching entry. If one is found, it is

updated; otherwise a new entry is created. The update sets

the timestamp to the kernel time jiffies3.

Outgoing link selection

Outgoing links are selected according to the available

neighboring nodes, present in the neighboring database.

3 A jiffy is the duration of one tick of the system timer interrupt. It is not an
absolute time interval unit, since its duration depends on the clock interrupt

frequency of the particular hardware platform.

First we check if there is any available neighbor, if not,

then the network interface cannot be used. After knowing

which network interfaces can be used, the VBA decides

which ones to use, based on their priorities and RTT

estimation.

This structure is used to store the information of the

available neighbors in an ad-hoc network, particularly the

available nodes and which interface should be used to

establish a connection with a certain node. We also added

the possibility to use the virtual interface in a non ad-hoc

scenario, which widens the possible scenarios the vi can be

used in.

3.2.3. Decider / Virtual Bandwidth Aggregation (VBA)

The VBA is responsible for choosing how the data, we

want to send, is divided between the available interfaces.

This is the mechanism, within our solution, that was

created from scratch and shall increase the total

throughput, in comparison with a basic setup, without the

virtual interface, since we are transparently aggregating the

available interfaces under the vi and dynamically

allocating the data we want to send between the existing

interfaces.

As mentioned before, there are several steps the vi

must complete before choosing how to divide the data

between the physical interfaces. First it is necessary to

check three parameters: the priority and RTT estimation of

each interface and their availability. Based on these three

parameters the VBA chooses how the data stored in the

dev_queue_xmit buffer will be redirected to the available

interfaces.

To store the priority of each physical interface, we

created a simple hash table that stores the names of each

physical interface within a certain virtual interface, and

their corresponding priorities. The access to the priority

table is done in order do find all the physical interfaces

with the highest priority, being 0 the highest.

After knowing which interfaces to use and their

availability, it is necessary to calculate the Round-Trip

Time (RTT) of each physical interface.

For this purpose and since TCP continuously estimates

the current RTT of every active connection in order to find

a suitable value for the retransmission time-out, we

implemented a mechanism capable of calculating the RTT

using TCP’s periodic timer. Each time the periodic timer

fires, it increments a counter for each connection that has

unacknowledged data in the network. For every data

stream sent using TCP there is an acknowledge response

that reaches the mobile device, these packets are

intercepted by the Virtual Interface, which will then extract

the RTT estimation.

After extracting the RTT information out of the TCP

ACK packets every 5 seconds, we use formula (1) to

calculate the smoothed RTT (SRTT), which give us a more

correct estimation of the actual average RTT for each

6

network interface. With each new sample Si, the new

SRTT is computed as [12][13]:

 (1)

Where SRTT(i) is the current estimate of the round-trip

time, SRTT(i+1) is the new computed value, and α is a

constant between 0 and 1 that control how rapidly the

SRTT adapts to changes (usually α=1/8).

By applying formula (1) with the information extracted

from the ACK packets constantly arriving, we are capable

of estimating the average RTT values for each physical

interface, without producing additional data.

Function (2) is used to balance the data in a

proportionate way through the several physical interfaces,

and is executed for each data flow that is intercepted by the

virtual interface.

 (2)

The PIa is the percentage a certain interface should be

used to transfer the data intercepted by the vi and its value

is between [0, 1]. The sum of all PI’s must be one and it is

calculated for every single available interface with the

highest priority. The RTT is the Round-Trip Time of a

certain interface and the summation interval is between 1

and n, being n the total number of available physical

interfaces with the highest priority.

When a virtual interface is first created, and several

interfaces are added, the table containing the results from

formula (2) is empty. For this matter we use function (3),

which uses the bandwidth from each interface, as a metric,

to calculate the necessary proportions that will be used to

calculate the amount of data each physical interface is

responsible for, within a certain data flow.

 (3)

Again, the PIa is the percentage a certain interface

should be used to transfer the data intercepted by the vi

and its value is between [0, 1]. The Bandwidth values are

acquired via SysFS and the summation interval is between

1 and n, being n the total number of available physical

interfaces.

After calculating all the PI’s, the VBA will now

redirect the data to the physical interfaces, taking into

consideration the obtained values.

In comparison with the previous versions [1][2], where

the authors only used priorities to divide the data between

the physical interfaces, we are now using a dynamic load-

balancing mechanism since we are dynamically allocating

the data through the existing interfaces.

3.2.4. Power Saving Mode

If the battery level is below 10% and if the mobile

device is not plugged in to any power adapter then the

power saving mode is activated. We take into

consideration the RTT values, in order to extrapolate the

throughput and the energy consumption of each interface.

Based on these two parameters we find the solution that

consumes the least amount of energy to send the data.

The Throughput is measured in bits per second, it is

estimated based on the RTT measurements and it is

calculated using formula (4). Note that by default the TCP

Buffer size >= TCP Window size. Typical TCP window

size is equal to 64 Kbyte, and the RTT is measured in

seconds.

The value we obtain in formula (4) is a theoretical

value of the throughput. It is calculated in order to estimate

the energy consumption of a certain interface and is used

in formula (5). To simplify the calculation we are

assuming a packet loss of 0%, since the obtained values

are merely for comparison reasons, so we can understand

which interfaces use the most amount of energy to send a

certain data flow.

 (4)

When a node sends or receives a packet, the associated

network interface, decrements the available energy

according to the following parameters: (a) the specific

network interface controller (NIC) characteristics, (b) the

size of the packets and (c) the bandwidth used. The

following formula represents the energy used (in Joules)

when a packet is transmitted or received (Formula 5) and

the packet size is represented in bits.

 (5)

The energy consumption is measured in miliamperes

(mA), varies with the interface being used and if a packet

is being transmitted or received. The energy supply also

varies with the device being used and is measured in Volts

(V).

Although the equipment consumes energy, not only

when sending and receiving but also when listening, we

have assumed in our model that the listen operation is

energy free, since all the evaluated ad-hoc routing

protocols will have similar energy consumption due to the

node idle time.

After knowing how much energy a network interface

requires for sending a packet, we can now calculate if the

current set up, defined by the VBA is consuming the least

amount of energy to send a certain data flow. For that we

use formula (6), representing the energy consumed during

the transmission of the data present in the output buffer (in

Joules). The BufferSize and PacketSize are both

represented in bits and the summation interval is between 1

and n, being n the total number of available physical

interfaces with the highest priority. The PI represents the

value calculated in either formula (2) or formula (3) and

Energy represents the energy used (in Joules) when a

packet is transmitted, and it is calculated in formula (6).

7

 (6)

We then compare the acquired energy consumed value

with the energy the interface with the lowest energy

consumption would require for sending the same amount

of data. For that we use formula (7). The parameters are

the same as the ones in formula (6), but now we are only

taking in consideration one interface, not all the interfaces

present in the mobile device.

 (7)

After acquiring this second value we compare both

energy results, and verify if EnergyConsumedVBA ≥

EnergyConsumedI. If this is the case, then the VBA will

only use the interface with the lowest energy consumption

to transmit the data flow, since it will consume less energy.

4. System Evaluation

This chapter is dedicated to the performance evaluation

of the main building blocks of this work, attempting to

answer the questions that lead to this work and that can be

aggregated into three main aspects:

 Is the overhead added by the virtual interface

excessive?

 Are the implemented mechanisms improving the total

throughput?

 Is the handover time affected by such end-to-end

abstraction?

The traffic used in the simulations was generated by

relying on iperf4, since it is supported by both Linux and

Windows operated systems, via its graphical component

jperf5. It is more focused on measuring the network

available bandwidth, capable of measuring bandwidth and

datagram loss and also presents the results of jitter and

RTT. To evaluate the overhead and handover time, we

used the command ping.

For each test, in terms of measuring the available

bandwidth we also tested different packet sizes, which are

important to determine the per-packet overhead. The

values are averaged over 20 readings and each reading

takes 100 seconds to acquire (except the handover time

that requires only the number of packets lost while

handover is occurring).

All readings were taken on a laptop Sony Vaio PCG-

7N2M. A Tsunami desktop computer using Windows

Vista operating system was also used as server, to receive

the data sent from the laptop running the virtual interface

module. The access points used in the experiments were

routers Fonera+6, flashed with the Linux based firmware

DD-WRT7. Our solution was tested with AODV-UU [14]

routing protocol and different types of data (TCP and

4 Iperf, http://sourceforge.net/projects/iperf/
5 Jperf, http://sourceforge.net/projects/jperf/
6 Fonera, http://www.fon.com/
7 DD-WRT, http://www.dd-wrt.com

UDP). The obtained results were of course compared with

a simple scenario with no virtual interface, no bandwidth

aggregation and no load-balancing mechanisms, referred

as RAW.

The experiments run considered three different

topologies as basis for the different developed scenarios. In

each topology we test both the load-balancing mechanism

as well as the power saving mode, in terms of throughput

and delay, to understand the actual impact of the virtual

interface.

The first topology considered (Topology I) is

illustrated in Figure 3. For the mentioned topology, node A

is connected by means of an ad-hoc network. The purpose

of this configuration is related to the need to get data that

serves as control, relating to the situation where we are not

using the virtual interface, which will then be compared

with more complex scenarios where we use the vi. We also

use this topology to estimate the delay added by the virtual

interface, in order to understand the impact the vi is

causing in terms of throughput in a situation where only

one single node is available. The virtual interface will be

situated behind the physical interface, as presented in

Figure 3.

Figure 3: Topology I, one interface and one AP.

Topology II is in fact similar to I, being the only

difference the number of physical network interfaces

present and the number of access points, which was now

increased to 2. Such increment will assist in trying to

understand the impact caused by the number of interfaces

in the performance evaluation of the virtual interface. Two

tests will be made using this topology. In the first one,

both access points will only have one user connected and

transmitting data, while in the second test, one of the

access points will be saturated with data from a third party

computer.

Finally, topology III still consists of paths that are one

hop long, but now there is just one AP and three network

interfaces. In this experiment the AP is saturated with data

from a secondary source. Our expectations were to observe

what would be the reaction of the vi when there is an

increment in the number of interfaces, in a worst case

scenario, where there is just one AP and multiple network

interfaces. For this scenario we also used different network

interfaces, two IEEE 802.11g and one IEEE 802.11b.

A
Dest.

B
(Source)

192.168.2.4
ath0

192.168.2.1

eth0

192.168.0.1 192.168.0.141

Switch

802.11b/g

Interface

Wireless

Wired

Components

Virtual

Interface

8

 1KB
STD
(σ)

2KB
STD
(σ)

4KB
STD
(σ)

8KB
STD
(σ)

16KB
STD
(σ)

32KB
STD
(σ)

RAW
(Mbps)

21,914 0,381 22,139 0,343 22,814 0,421 23,108 0,396 23,363 0,414 23,743 0,442

Virtual
interface
(Mbps)

21,047 0,511 21,243 0,547 21,984 0,650 22,455 0,682 23,022 0,715 23,482 0,788

Virtual
Interface w/

Power
saving

mode on
(Mbps)

21,001 0,523 21,109 0,581 21,807 0,694 22,393 0,702 22,900 0,763 23,374 0,802

Table 3: Wlan throughput in Mbps, different packet sizes.

4.1. Experiment 1

Starting with the analysis of the delay added by the vi,

Table 1 shows the round-trip time in milliseconds and zero

percentage of packet loss for the two same situations. This

information allows us to have a very clear image of the

delay added by the virtual interface since ping was used

with the default packet size (64bytes). The smaller the

packets, the more of them there are, which makes it easier

to calculate the difference in terms of RTT between the

control, designed as RAW, and our solution, since the

differences are most likely caused by the vi module The

values are taken during 100 seconds and averaged over 20

readings.

Average
RTT (ms)

Std.
Deviation

(σ)

RAW 1,730 0,009

Virtual Interface 1,799 0,016

Virtual Interface w/
Power saving mode on

1,808 0,014

Table 1: Ping results, 1 interface and 1 access point.

As we can see by the results presented in Table 1 the

delay added by the vi, while the power saving mode is off,

is around 4.0%, and roughly 4.2% with the power saving

mode on, which is almost irrelevant (less than 0,1ms). The

standard deviation also increases, while using the vi, since

it is periodically estimating the RTT values for the

available interfaces, which causes some fluctuations in

terms of the total throughput. Also, there was zero percent

packet loss for all three test situations.

Still in Experiment 1, we calculated the handover time,

using the command ping. The number of missing packets

were counted and multiplied by the ping frequency. The

type of handover that was measured was the horizontal

handover, where the MAC level protocol remains the

same, but the route changes. We trigger a route change by

physically detaching the interface of a node. The results

are presented in Table 2. Handover times are averages over

20 readings with standard deviation σ. Entries of the form

"VI/x" must be understood as "Virtual Interface with a

maxdiff value of x".

Under our setup, when the vi was not being used, we

measured a packet loss of roughly 1.5 packets when the

route changed from one hop to another. Each packet that is

lost corresponds to roughly one second passed by, since

the ping frequency that was used was one second.

From the results presented in Table 2 we see that

packet loss increases with increasing maxdiff threshold.

The former is reasonable because the bigger the maxdiff

value, the more the priority policy gets enforced, and a

pure priority driven MAC switching would not lead to any

switching at all. As expected, the smaller maxdiff gets the

less stable the handover becomes. However, in our

scenario a maxdiff value of 10 was sufficient to guarantee

stable handover while changing interface priorities.

Type Interface Time (s) Standard
Deviation (σ)

Horizontal RAW
Vi/10

Vi/100
Vi/1000

1.5
1.8
2.3
2.5

0,5
0.92
0.73
0.67

Table 2: Handover time in seconds, using Wi-Fi interfaces.

Regarding the total throughput using TCP data, Table 3

shows the throughput and corresponding standard

deviation (σ) when using the virtual interface, and the raw

measurements taken without it.

The results we obtained for the first scenario show that

the difference in terms of throughput between using or not

the virtual interface for TCP, with just one interface, is

very small. Around 3.1% less in average with the power

saving mechanism off and 3.5% while on. Which is a good

indicator, since with this topology the vi is simply relaying

packets to the available network interface.

Finally in Experiment 1, we calculated the amount of

energy the mobile consumed during 600 seconds, with and

without the vi module, so we could understand this

abstraction impact on the energy being consumed by the

mobile device.

 Energy
Consumption

(mWh) per second

Energy
Consumed

(mWh) in 600s

Standard
Deviation

(σ)

RAW 5,294 3123,333 1,035

Virtual
Interface

5,316 3136,667 1,209

Table 4: Energy consumption in milliwatt hour.

The values in table 4 are presented in miliwatt hour

(mWh). They were measured during 600s and averaged

over 10 readings. To measure the consumed energy during

this period we used the bash script. It extracts the energy

9

the device has, for each 10 seconds. The following table

presents both the average energy consumption in mWh per

second, and the total energy consumed during the 600s

period.

As we can see in Table 4, the difference in terms of

energy consumed during 600 seconds, between both

scenarios, was only 13,33 mWh, just 0,427% more. This

result proves that the module consumes just a minor added

amount of energy when compared with a control scenario,

designed as RAW in Table 4.

4.2. Experiment 2

The experiment 2 is divided in two scenarios. Both rely

on Topology II. While in the first test, the two existing

APs are only being used by one node, in the second test,

one of the APs is also being used by a second node that is

constantly sending data, to simulate a saturated AP. The

two physical interfaces used for this experiment were

IEEE 802.11g.

In this experiment we investigate wherever the virtual

interface is capable of detecting a saturated AP and

reducing the amount of data a certain physical interface is

sending to it, by diverting part of the traffic to a second

physical interface that is using a less saturated AP.

Two Access Points, no saturation

For this scenario we used one data flow coming from a

single application and multiple data flows coming from

different applications, so the available interfaces could be

used simultaneously. The throughput values were

measured during 100 seconds and averaged over 20

readings. The packet size used for this experiment was 32

Kbytes.

The total throughput when using the virtual interface

with TCP data (while sending a single data flow) is very

similar in comparison with RAW measurements taken

without the virtual interface. On the other hand the values

obtained when sending different data flows, are nearly

79% higher when comparing with the RAW measurements

from Experiment 1. This increment results from the fact

that we are simultaneously using several physical

interfaces to send the different data flows.

 Average
Throughput

(Mbit/s)

Standard
Deviation

(σ)

Packet
loss
(%)

One Data Flow 23,627 0,610 1%

Multiple Data
Flows

42,615 5,161 3%

RAW 28,879 0.410 0%

Table 5: Throughput in Mbps, 2 network interfaces and 2 APs.

The packet loss is in average 1% and 3% (cf. Table 5)

for one data flow and multiple data flows respectively, due

to the fact that we are constantly switching the physical

interfaces used to transmit the data, which causes some

packets to be lost and some fluctuations in terms of

throughput, raising also the standard deviation.

Two Access Points, AP C is saturated

For this scenario we saturated one of the access points,

to verify how would the vi adapt to a sudden increase in

terms of the RTT value measured for a certain physical

interface, connected to that AP. As in the previous test

experiment, single and multiple data flows were tested.

The values obtained were taken during a time frame of 100

seconds, and averaged over 20 readings. For a better

comparison, we also measured the throughput of a single

interface, without using the vi module, designated as

RAW, connected to a single saturated AP. The packet size

used for this experiment was 32 Kbytes.

In this specific scenario, with a single data flow, the

usage of the vi module with two different physical

interfaces is in average, increasing 63% the total

throughput, when comparing with a situation where a

single interface is connected to a saturated AP (11,713

Mbps).

When sending different data flows, we obtained a very

similar result to the one presented in the previous scenario

(2 APs, no saturation). It takes around 6s for the

throughput to reach a maximum of 35Mbps, when the vi

starts using both physical interfaces, and consequently the

two APs.

 Average
Throughput

(Mbit/s)

Standard
Deviation

(σ)

Packet
loss
(%)

One Data
Flow (vi)

19,125 5,491 2%

Multiple Data
Flows (vi)

33,575 5,551 3%

RAW 11,713 0,428 1%

Table 6: Throughput in Mbps, using two interfaces and two APs
(one saturated).

The load-balancing mechanism presented in the vi

module slightly increases the packet loss and standard

deviation as seen in Table 6. If we compare both the

standard deviation results, of this and the previous

scenario, when sending a single and continuous data flow,

there is a slight increment, which is caused by the

difference in throughput values obtained for the two access

points (11.5 Mbps and 23.5 Mbps).

4.3. Experiment 3

To understand and find the potential limitations of the

vi module, we decided to create a worst case scenario. It

relies on Topology III, where we have three physical

network interfaces (two IEEE 802.11g and one IEEE

802.11b) connected to just one saturated access points.

Starting with the analysis of the total throughput using

TCP data, Table 7 shows the throughput when using the

virtual interface with one and several different data flows

during 100 seconds, averaged over 20 readings. The packet

size used for this experiment was 32 Kbytes.

10

Graph 1: Correlation between the total Throughput in Mbps and the Consumed Energy in miliwatt hour per second (mWh/s).

We also added the throughput of a single interface,

calculated without using the vi module, designated as

RAW, connected to a single saturated AP (values

calculated in experiment 2), for a better comparison.

 Average
Throughput

(Mbit/s)

Standard
Deviation

(σ)

Packet
loss
(%)

One Data
Flow (vi)

9,915 2,664 2%

Multiple Data
Flows (vi)

14,756 1,021 4%

RAW 11,713 0,428 1%

Table 7: Throughput in Mbps, using three interfaces and one
saturated AP.

As seen in Table 7 both the packet loss and standard

deviation, for the two test experiments are above the

values obtained for the control scenario, described as

RAW. This difference can be easily explained due to the

fact that for this experiment we have three network

interfaces, one of them has a lower bandwidth than the

other two, which causes a bigger fluctuation in terms of

total throughput. The one percent increment in the packet

loss may result from the usage of multiple interfaces in a

saturated environment.

4.4. Experiment 4

Finally in Experiment 4 we tested the power

consumption mechanism, to try to understand if by using

fewer interfaces to send the data we are able to diminish

the amount of energy being spent and if the difference is

significant. This experiment relies on Topology II, the two

network interfaces (1x IEEE 802.11g, 1x IEEE 802.11b)

are connected to two access points. Real traffic (different

data flows, from different applications) was used, to

simulate a real-life environment. The data for both

measurements was collected over 600 seconds (10

minutes) and is presented in Graph 1. Each measurement is

displayed according to its own axis, so we can then verify

if there is a correlation between the throughput and the

energy values. The energy consumption is presented in

miliwatt hour (mWh), while the throughput is displayed in

Mbps.

We can clearly verify from Graph 1, that when there is

an increment is terms of throughput, there is also a slight

increment is terms of the energy being consumed by the

device. The opposite is also true. This happens because the

power consumption mechanism, depending on the size of

the data flow, decides if the device should use the network

interfaces picked by the VBA or the interface with the

lowest energy consumption to send the data.

When a data flow has a significant size, it is usually

better to maintain the VBA’s policy, since the device will

transmit the data at a higher rate, which will result in a

lower amount of energy being consumed to send that

amount of data. When data flows have a relatively small

size, it takes roughly the same time to send them when

using one or several network interfaces, resulting in a

noticeable energy saving when using just one of those

interfaces (5.4%). This is exactly what we see in Graph 1.

During this experiment, the mechanism saved roughly

190 mWh of battery in our device, which for a laptop is

not very significant, but in a smaller and more economic

device, such as a mobile phone or a sensor, this difference

can have a very big impact, since it gives extra time of

battery.

5. Conclusions and Future Work

We implemented an end-to-end communication

abstraction that can be used in heterogeneous mobile ad-

hoc networks. Such networks are characterized by

different MAC technologies used among the nodes. The

solution is based on a virtual interface (vi) approach,

which allows the usage of all interfaces presented in a

mobile device simultaneously, while hiding the

heterogeneity from the network and allow any number of

interfaces to be added, increasing the total throughput.

0

2

4

6

8

0

10

20

30

40

0 100 200 300 400 500 600

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
W

h
)

p
e

r
se

co
n

d

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

Throughput (Mbps) and Energy Consumption (mWh)
Throughput Energy

Consumption

11

Implementing a virtual interface for transparent

heterogeneous mobile ad-hoc networks has proven to be a

good approach.

Overall there is a slight overhead when relying on the

vi, be it from a throughput, power consumption, or from a

delay perspective. This is expected, as by adding a layer of

abstraction, we are also adding overhead in computation,

with the expectations to introduce significant advantages.

Reasonable handover times can be achieved when using

any routing protocols. The throughput rates when using the

vi module, with several network interfaces, are

significantly higher, reaching in some situations an

increase of 79%. In terms of the power consumption

mechanism, the experimental values are also very

promising; by using this mechanism we were able to

optimize the amount of energy being consumed.

As future work, we would like to extend the virtual

interface to work in different access networks, others than

ad-hoc networks, with for example several 3G and 802.11x

interfaces. Moreover, it would be interesting to extend the

module to smaller devices, such as mobile phones, to see

how it would impair their performance in terms of their

total throughput and energy consumption.

References

[1] P. Stuedi and G. Alonso, “Transparent Heterogeneous

Mobile Ad-Hoc Networks”. In Proceedings of the Second

Annual International Conference on Mobile and

Ubiquitous Systems: Networking and Services, USA, July

2005.

[2] S. Graf, “Implementing a virtual network interface for

heterogeneous mobile ad-hoc networks (802.11 and

Bluetooth)”, Swiss Federal Institute of Technology, Zurich,

August 2006.

[3] James T. Yu, “Performance Evaluation of Linux Bridge”,

DePaul University, 2004.

[4] C. Tsao and R. Sivakumar, “On Effectively Exploiting

Multiple Wireless Interfaces in Mobile Hosts”, Georgia

Institute of Technology, December 2009.

[5] Netfilter - Firewalling, NAT and packet mangling for

Linux [Online] Available: http://www.netfilter.org/

[Accessed: Aug. 2010].

[6] The Netfilter project team, “Linux Netfilter/Iptables

frameworks”, Nov 1999. [Online]. Available:

http://www.netfilter.org/. [Accessed: Aug. 2010].

[7] H.-Y. Hsieh and R. Sivakumar. “A transport layer approach

for achieving aggregate bandwidths on multi-homed mobile

hosts”. In MobiCom '02 Proceedings of the 8th annual

international conference on Mobile computing and

networking, Atlanta, September 2002.

[8] K.-H. Kim, Y. Zhu, R. Sivakumar, and H.Y. Hsieh, “A

receiver-centric transport protocol for mobile hosts with

heterogeneous wireless interfaces”. Wireless Networks,

2005.

[9] J. Mota, A. Arsénio and R. Sofia, “Combining

Heterogeneous Access Networks with Ad-Hoc Networks

for Cost-Effective Connectivity”. In API Review 2010, 1º

volume, Edições Lusófonas, February 2011.

[10] Mirzaie, S. Elyato, A.K. Sarram, M.A., “Preventing of

SYN Flood Attack with Iptables Firewall”, in

Communication Software and Networks, 2010. ICCSN '10.

Second International Conference, Singapore, February

2010.

[11] Linux Diagnostic Tools – System Utilities based on Sysfs.

[Online] Available: http://linux-

diag.sourceforge.net/Sysfsutils.html. [Accessed: June

2010].

[12] P. Karn and C. Partridge. Improving round-trip time

estimates in reliable transport protocols. In Proceedings of

the SIGCOMM ’87 Conference, Stowe, Vermont, August

1987.

[13] V. Jacobson. “Congestion avoidance and control”. In

Proceedings of the SIGCOMM ’88 Conference, Stanford,

California, August 1988.

[14] Uppsala University CoRe Group. Aodv-uu. [Online]

Available: http://core.it.uu.se/AdHoc/AodvUUImpl.

[Accessed: Aug. 2010].

http://www.netfilter.org/

